Copyright

© 2005 Aruba Wireless Networks, Inc. All rights reserved.

Specifications are subject to change without notice.

Originated in the USA.

Trademarks

Aruba Networks and Aruba The Mobile Edge Company are trademarks of Aruba Wireless Networks, Inc.

All other trademarks or registered trademarks are the property of their respective holders.
Electromagnetic Interference

FCC - Class A

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at their own expense.

Any changes or modifications not expressly approved by the party responsible for compliance could void the user’s authority to operate this equipment.

This product complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Industry Canada - Class A

This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus as set out in the interference-causing equipment standard entitled “Digital Apparatus,” ICES-003 of the Department of Communications.

Cet appareil numérique respecte les limites de bruits radioélectriques applicables aux appareils numériques de Classe A prescrites dans la norme sur le matériel brouilleur: “Appareils Numériques,” NMB-003 édictée par le ministère des Communications.

VCCI - Class A

この装置は、情報処理装置等電波障害自主規制協議会（V C C I ）の基準に基づくクラス A 情報技術装置です。この装置を家庭環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。
CE - Class A

Warning—This is a Class A product. In a domestic environment, this product may cause radio interference in which case the user may be required to take adequate measures.

EU - Class A

This product complies with EN55022 Class A and EN55024 standards.

Safety

Lithium Battery Notice

This product contains a lithium battery which is replaceable only by a trained technician.

CAUTION—The lithium battery may explode if it is incorrectly replaced. A trained technician should replace the battery with only the same or equivalent type battery recommended by the manufacturer. Dispose of used batteries according to the manufacturer’s instructions.

Laser Notice

This product uses replaceable laser transceiver modules on some ports.

CAUTION—Use of controls or adjustments of performance or procedures other than those specified in this manual may result in hazardous radiation exposure.

For continued compliance with the above laser safety standards, only approved Class 1 modules from our approved vendors should be installed in the product. See “Approved GBICs” on page 23 for a list of approved modules and vendors.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>vii</td>
</tr>
<tr>
<td>Overview of this Manual</td>
<td>vii</td>
</tr>
<tr>
<td>Related Documents</td>
<td>vii</td>
</tr>
<tr>
<td>Text Conventions</td>
<td>viii</td>
</tr>
<tr>
<td>Contacting Aruba Networks</td>
<td>ix</td>
</tr>
<tr>
<td>To the Network Manager</td>
<td>xi</td>
</tr>
<tr>
<td>The Aruba WLAN Solution</td>
<td>xi</td>
</tr>
<tr>
<td>Deployment Summary</td>
<td>xi</td>
</tr>
<tr>
<td>Features</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 1 System Overview</td>
<td>1</td>
</tr>
<tr>
<td>Physical Description</td>
<td>2</td>
</tr>
<tr>
<td>Chapter 2 Installing the Chassis</td>
<td>5</td>
</tr>
<tr>
<td>Pre-Installation Checklist</td>
<td>5</td>
</tr>
<tr>
<td>Precautions</td>
<td>6</td>
</tr>
<tr>
<td>Requirements</td>
<td>7</td>
</tr>
<tr>
<td>Rack Mounting Kit</td>
<td>7</td>
</tr>
<tr>
<td>Selecting a Location</td>
<td>7</td>
</tr>
<tr>
<td>Mounting the Chassis</td>
<td>9</td>
</tr>
<tr>
<td>Connecting Power</td>
<td>12</td>
</tr>
<tr>
<td>Chapter 3 Verifying the Installation</td>
<td>13</td>
</tr>
<tr>
<td>Appendix A Power Management</td>
<td>15</td>
</tr>
</tbody>
</table>
Contents

Appendix B
Ports ... 17
- FE Network Ports .. 17
 - Serial & Power Over Ethernet 17
 - Physical Description & LEDs 18
 - Pin Outs .. 20
 - Cables ... 20
- GE Uplink Ports .. 22
 - Physical Description and LEDs 22
 - GBICs ... 23
 - Cables ... 25
- Serial Console Port .. 25
 - Port & Adapter Pin Outs .. 26
 - Communications Settings 26

Appendix C
Specifications .. 27
- Proper Disposal of Aruba Equipment 29
This preface includes the following information:

- An overview of the sections in this manual
- A list of related documentation for further reading
- A key to the various text conventions used throughout this manual
- Aruba Wireless Networks support and service information

Overview of this Manual

This manual is for trained technicians responsible for installing the Aruba 2400. This manual is organized as follows:

Chapter 1, “System Overview”—Describes the main features of this product, including physical diagrams.

Chapter 2, “Installing the Chassis”—Instructions for mounting the chassis and attaching power.

Chapter 3, “Verifying the Installation”—Instructions for performing initial power-on tests.

Appendix A, “Power Management”—Worksheet for determining system power load.

Appendix B, “Ports”—Describes interface, cable, and adapter specifications for system ports.

Appendix C, “Specifications”—Describes the system’s size, weight, storage and operating environment, and certifications for electromagnetic compliance and safety.

Related Documents

The following items are part of the complete documentation for the Aruba system:

- *Aruba 2400 Mobility Controller Installation Guide* (this manual)
- *ArubaOS User’s Guide*
- *Aruba AP Installation Guide*
Text Conventions

The following conventions are used throughout this manual to emphasize important concepts:

TABLE 1 Text Conventions

<table>
<thead>
<tr>
<th>Type Style</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italics</td>
<td>This style is used to emphasize important terms and to mark the titles of books.</td>
</tr>
<tr>
<td>System items</td>
<td>This fixed-width font depicts the following:</td>
</tr>
<tr>
<td></td>
<td>• Sample screen output</td>
</tr>
<tr>
<td></td>
<td>• System prompts</td>
</tr>
<tr>
<td></td>
<td>• Filenames, software devices, and certain commands when mentioned in the text</td>
</tr>
<tr>
<td>Commands</td>
<td>In the command examples, this bold font depicts text that the user must type exactly as shown.</td>
</tr>
<tr>
<td></td>
<td><code><Arguments></code></td>
</tr>
<tr>
<td></td>
<td>In the command examples, italicized text within angle brackets represents items that the user should replace with information appropriate to their specific situation. For example:</td>
</tr>
<tr>
<td></td>
<td># send <text message></td>
</tr>
<tr>
<td></td>
<td>In this example, the user would type “send” at the system prompt exactly as shown, followed by the text of the message they wish to send. Do not type the angle brackets.</td>
</tr>
<tr>
<td>[Optional]</td>
<td>In the command examples, items enclosed in brackets are optional. Do not type the brackets.</td>
</tr>
<tr>
<td>{ Item A</td>
<td>Item B }</td>
</tr>
</tbody>
</table>
Contacting Aruba Networks

Web Site
- Main Site http://www.arubanetworks.com
- Support http://www.arubanetworks.com/support

E-mail
- Sales sales@arubanetworks.com
- Support support@arubanetworks.com

Telephone Numbers
- Main 408-227-4500
- Fax 408-227-4550
- Sales 408-754-1201
- Support
 - In the US: 800-WI-FI-LAN (800-943-4526)+
 - France: 33 (0) 170725559+44 (0)
 - UK: 2071275989+49 (0)
 - Germany: 69380977228+00 1
 - All Other: 408-754-1200
As with any full-featured network equipment, deploying the Aruba Wireless LAN (WLAN) solution requires a degree of planning. The process may involve multiple components as well as various individuals in your organization. As the network manager, you should become familiar with the components and deployment summary outlined in this section.

The Aruba WLAN Solution

The Aruba WLAN solution consists of three major components:

- **Mobility Controller.** This is an enterprise-class switch into which multiple Access Points (APs) and Air Monitors (AMs) are connected and controlled.
- **Aruba Wireless Access Point.** This is a next-generation wireless transceiver which functions as an AP or AM. Although third-party APs can be used with the Aruba WLAN system, the Aruba AP provides the best features and easiest integration.
- **ArubaOS Switch Software.** This software intelligently integrates the Mobility Controller and APs to provide load balancing, rate limiting, self healing, authentication, mobility, security, firewalls, encryption, and centralization for monitoring and upgrades.

Deployment Summary

This section outlines the various tasks involved in deploying the Aruba WLAN solution, and indicates the document where you can find appropriate instructions.

NOTE: Documents named below are included on the Aruba Documentation Library CD-ROM.

1. **Physical installation of the Mobility Controller**

 Installation requires a trained technician who is experienced with handling and installing similar equipment. This phase involves the following tasks:

 - Transport, unpack, and mount the switch in a suitable rack environment.
 - If using a modular switch chassis, install any extra modules you may have ordered.
 - Attach power and a console.
To the Network Manager

- Boot the system and perform the initial power-on test, examining the LEDs and console messages to ensure proper operation.

The Aruba Mobility Controller Installation Guides provide the necessary instructions.

2. Initial configuration of the Mobility Controller

Configuration requires someone who understands the company's wired network and has experience with the physical and logical management and configuration of routers, switches, servers, and clients. This phase involves the following tasks:

- Use the console to perform initial configuration of the Mobility Controller.
- Attach the switch to the network.

The Aruba Quick Start Guide provides instructions.

3. Planning the location of access points and air monitors

This phase requires someone familiar with your wireless network deployment strategy and the features required of the Aruba WLAN solution. You can manually determine the locations for APs, or use a Web browser to access the Mobility Controller's built-in RF Plan tool and perform the following tasks:

- Define the physical site parameters.
- Determine how many access points are needed and where they should be located.
- Simulate network failures and recovery characteristics, and adjust placement if necessary.

Refer to the ArubaOS User Guide for instructions.

4. Physical installation of the Aruba Wireless Access Points

This requires a trained technician. The following tasks are involved:

- Perform initial configuration of the AP.
- Mount the AP in its appointed service location.
- Attach required network cables and power.

Refer to the Aruba AP Installation Guides for instructions.

5. Advanced configuration of the Mobility Controller

Again, configuration requires someone who understands the company's network and has experience managing routers, switches, servers, and clients. The following tasks are involved:

- Configure the planned network features via command line or Web interface.
- Test and debug the deployment.

Refer to the ArubaOS User Guide and the ArubaOS Reference Guide for in-depth information and examples on the Mobility Controller's more advanced features.

6. Monitoring and maintenance
This requires someone experienced using various types of software tools to gather and interpret network performance information. The following tasks are involved:

- Perform remote monitor and management functions via command line or Web interface.
- Identify problems and initiate support when necessary.
- Ensure that hardware support issues are handled by a trained technician.

Refer to the ArubaOS Reference Guide for instructions for collecting system health and performance information. The Aruba Mobility Controller Installation Guides and Aruba AP Installation Guides provide instructions for hardware issues.
The Aruba 2400 is an enterprise-class switch which connects, controls, and intelligently integrates wireless Access Points (APs) and Air Monitors (AMs) into the wired LAN.

This chapter introduces you to the Mobility Controller. It describes the general features of the system and illustrates key physical elements. Once you are familiar with the system, you can begin the installation process covered in the next chapters.

Features

This section outlines the general features of the Mobility Controller:

- 24 10/100 Mbps Fast Ethernet (FE) ports with Serial and Power Over Ethernet (SPOE) capability.
- 2 10/100/1000 Mbps Gigabit Ethernet (GE) uplink ports.
- All ports automatically sense and negotiate speed, duplex, and MDI/MDX settings.
- High-speed Layer-2/Layer-3 packet forwarding.
- High-performance packet processing provides value-added wireless services such as load balancing, rate limiting, self-healing, calibration, authentication, mobility, security, firewalls, encryption, and centralized monitoring and configuration.
- 1U chassis can be mounted in a standard 19-inch network equipment rack.
- The switch firmware can be easily upgraded as future software releases are made available. You can install upgrades using TFTP.
Physical Description

FIGURE 1-1 Aruba 2400 System

1 **System Indicator LEDs**

<table>
<thead>
<tr>
<th>LED</th>
<th>State</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Green</td>
<td>Switch is receiving proper power.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Switch is powered off.</td>
</tr>
<tr>
<td>Status</td>
<td>Green</td>
<td>Switch has booted and is functioning properly.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>Switch is booting, loading software, or has failed.</td>
</tr>
</tbody>
</table>

2 **24 FE ports**

These network ports are used for connecting wireless APs, such as the Aruba Wireless Access Point, as well as wired LAN segments. The ports provide 10/100 Mbps Fast Ethernet connectivity, and in some cases, power and serial connectivity as well. See “FE Network Ports” on page 17 for port, LED, and cable specifications.

3 **2 GE uplink ports**

The GE ports can provide high-bandwidth uplinks between the Mobility Controller and the wired LAN. The GE port sockets accept a variety of Gigabit Interface Converters (GBICs) for versatility in selecting optical and electrical interfaces. See “GE Uplink Ports” on page 22 for port, LED, and cable specifications.
4 Serial Console port
This port is for connecting a local management console. It is required to access the text-based Command-Line Interface (CLI) for initial configuration of the Mobility Controller. It can also be used for switch management and troubleshooting.

The port accepts an RS-232 serial cable an RJ-45 male connector. See “Serial Console Port” on page 25 for more port and cable specifications.

See the ArubaOS User’s Guide for details on using the features available through this port.

5 Fans/heat exhaust (on side)
Four independent fans promote proper air circulation for cooling the Mobility Controller.

During operation, the air vents on the left and right sides of the chassis must remain unobstructed by cables or mounting equipment. For proper air circulation, leave at least 10 cm (4 inches) of clearance on the left and right of the chassis.

6 Holes for attaching rack mounting brackets (on side)

7 Power Input Socket (on back)
The power input socket on the back of the switch accepts a power cord with a standard IEC320 connector. For proper safety and performance, the power cord must be rated to 10 A and conform to grounded electrical standards in the country where the product is operated.
Installing the Chassis

Precautions to be observed during installation
Requirements for Mobility Controller components and rack mounting gear
Selecting a proper environment for the Mobility Controller
Mounting the Mobility Controller in a rack
Connecting power to the Mobility Controller

Pre-Installation Checklist

During installation, you will need the following:

- Aruba 2400 chassis
- Two mounting brackets (included)
- Six 6-32 flat head screws (included)
- Four 12-24 screws (included) or screws appropriate for your rack
- Aruba power cord rated to at least 10 A with IEC320 connector (included)
- Phillips or cross-head screwdriver
- 19-inch equipment rack, or equivalent
- 1U rack space with 10 cm (4 inches) clearance to the left and right of the rack
- Electrical power: 90-135/180-264 VAC, 50 to 60 Hz, 4.0/2.0 A
- Cool, non-condensing air 0 to 40 ºC (32 to 104 ºF). May require air conditioning
- Another person to help position the switch
- Console terminal (or computer running emulation software) with RJ-45 or DB-9 serial port
- RS-232 serial cable with RJ-45 male connectors (straight-through Ethernet patch cable)
- Aruba serial adapter (included) if connecting to the console with DB-9

CAUTION: Installation should be performed by a trained technician.
Precautions

CAUTION: Hazardous energy is always present while the Aruba 2400 is plugged into an electrical outlet. Remove all rings, jewelry, and other potentially conductive material before working with this product.

Never insert foreign objects into the chassis or any other component, even when the Mobility Controller is unpowered or unplugged.

Main power is fully disconnected from the Mobility Controller by unplugging the power cord from the power outlet. For safety reasons, verify the power outlet and plug are within easy reach of the operator.

Do not handle electrical cables which are not insulated. This includes any network cables.

To minimize electrical hazard, keep water and other fluids away from the product.

Comply with electrical grounding standards during all phases of installation and operation of the product. Do not allow the Mobility Controller chassis, network ports, power source, or mounting brackets to contact any device, cable, object, or person attached to a different electrical ground. Also, never connect the device to external storm grounding sources.

Installation or removal of the chassis must be performed in a static-free environment. The proper use of anti-static body straps and mats is strongly recommended.

Do not ship or store this product near strong electromagnetic, electrostatic, magnetic, or radioactive fields.

Do not disassemble the chassis. This product has no internal user-serviceable parts. When service or repair is needed, see “Contacting Aruba Networks” on page ix.
Requirements

Rack Mounting Kit

Use the included rack mounting kit to mount the Mobility Controller in any standard 19-inch network equipment rack. The rack mounting kit consists of the following parts:

![Rack Mounting Kit Diagram]

FIGURE 2-1 Rack Mounting Kit

NOTE: The four 12-24 screws are intended for securing the switch to the rack. Some racks require different screws which are not included. Verify that you have the correct screws or fasteners for your rack system before attempting to mount the switch.

Selecting a Location

The Mobility Controller, like other network and computing devices, requires an “electronics friendly” environment.

- Reliable power

 Verify that your electrical outlet is compatible with the Mobility Controller. The switch power input is auto-ranging and accepts 90~132/180~264 VAC, 50 to 60 Hz, 4.0/2.0 A.

 The power cords must be rated to 10 A and conform to grounded electrical standards in the country where the product is operated.

 Use of a power line conditioner or Uninterruptible Power Supply (UPS) can decrease or mitigate problems caused by power service fluctuations. Verify that the output of any power shaping device is compatible with the Mobility Controller power supply.
Cool, non-condensing ventilation

For proper operation, the Mobility Controller requires an environment with an ambient air temperature between 0 and 40 °C (32 to 104 °F). Humidity must be kept at non-condensing levels between 5 and 95%.

Where a large number of electrical devices are working in the same area, additional air conditioning or air circulation equipment may be required.

Ample space

For proper air circulation, leave at least 10 cm (4 inches) clearance for the vents on the left and right of the chassis.

Leave additional space in front and back of the chassis to access power cords, network cables, and indicator LEDs.

Limited electromagnetic interference

For best operation, keep the Mobility Controller and all cords and cables at least 0.7 meters (2 feet) from fluorescent lighting fixtures, and 2 meters (6 feet) from photocopiers, radio transmitters, electric generators, and other sources of strong electromagnetic interference.
Mounting the Chassis

1. Verify that your rack environment meets requirements (see “Selecting a Location” on page 7).

2. Attach the rack mounting brackets to the switch chassis as shown in Figure 2-2.

![Figure 2-2: Attaching the Rack Mounting Brackets](image)

Orient both brackets so that the narrow flange faces the front. When placed properly, the brackets’ screw holes will match the holes on the side of the chassis.

Use a Phillips or cross-head screwdriver to attach each bracket securely with three 6-32 flat head screws (included).

3. Attach the Mobility Controller to the rack.

Caution: To avoid personal injury or damage to equipment, get help for lifting and positioning the Mobility Controller. Also, do not install the Mobility Controller in any fashion where instability or uneven mechanical loading may occur.
NOTE: For proper operation, the Mobility Controller requires an ambient air temperature between 0 to 40 °C (32 to 104 °F). Verify that your rack environment is in compliance.

Position the switch chassis in the equipment rack and align the brackets’ mounting holes with the corresponding holes in your rack frame.

FIGURE 2-3 Mounting the Mobility Controller

Use a Phillips or cross-head screw driver to secure the switch to the rack with two 12-24 screws (included) for each mounting bracket.

NOTE: Some cabinets require different screws which are not included. Verify that you use the correct screws or fasteners for your rack system.
4. Adhere to all clearance requirements.

Figure 2-4 “Keep Clear” Zones

For proper air circulation, leave at least 10 cm (4 inches) clearance for the vents on the left and right of the chassis.

Leave additional space in front and back of the chassis to access power cords, network cables, and indicator LEDs.
Connecting Power

CAUTION: This procedure should be performed by a trained technician.

1. Verify you understand the procedure and all precautions.
 Before beginning, read the entire procedure. Verify you understand all the precautions in these steps as well as those on page 6.

2. Verify that your site’s electrical system is compatible with the mobility controller.
 The switch power input is auto-ranging and accepts 90~132/180~264 VAC, 50 to 60 Hz, 4.0/2.0 A.

 NOTE: Use of a power line conditioner or Uninterruptible Power Supply (UPS) can decrease or mitigate problems caused by power service fluctuations. Verify that the output of any power shaping device is compatible with the Mobility Controller power supplies.

3. Verify that the mobility controller power supply can handle the POE devices.
 The total power drawn by all connected Power Over Ethernet (POE) devices must not exceed 200 W total. For details, see “POE Power Requirements” on page 15.

4. Attach the power cord to the power input socket at the back of the mobility controller.
 Plug an appropriate power cord into the power input socket. Use the included power cord if it is compatible with your electrical outlet. Otherwise, replace the power cord with the type appropriate for your country. The power input socket accepts a power cord with a standard IEC320 connector.

 CAUTION: For proper safety and performance, the power cord must be rated to 10 A and conform to grounded electrical standards in the country where the product is operated.

5. Attach the power cord to a proper electrical outlet.
 Once power is connected, the mobility controller will automatically turn on and you can perform the power-on test (see page 13).
Verifying the Installation

Once the Mobility Controller is physically installed, run the following power-on test:

1. Check for the proper power indicators.
 Immediately upon power up, you should observe the following:
 - The system Power LED lights solid green
 - The system Status LED is initially off while booting

2. Check the fans to verify they are working.
 You should be able to feel significant airflow blowing from the chassis vents at each of the three fan positions.

 CAUTION: If one or more fans do not work, immediately shut down and replace the Mobility Controller.

3. Check for the appropriate operation indicators.
 Once the system has successfully booted, you should observe the following:
 - The system Power LED is still lit solid green.
 - The system Status LED is solid green.

 NOTE: For more information on LED behavior, see System Indicator LEDs on page 2.

4. Once the system has passed the initial power-up test, connect the appropriate network cables (see on page 13 for port and cable information).

5. You are now ready to perform the initial setup as described in the Aruba Quick Start Guide (which is included in the Accessory Kit).
Use this worksheet to determine the power required by your Mobility Controller. Use a separate copy for each system deployed in your network.

System and Location

<table>
<thead>
<tr>
<th>Mobility Controller</th>
<th>Location</th>
</tr>
</thead>
</table>

POE Power Requirements

Determine the power output required by switch ports that supply Power Over Ethernet (POE).

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Power Rating</th>
<th>Number of Units</th>
<th>Power Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each Aruba AP drawing POE</td>
<td>10 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Each Cisco 1200 AP drawing POE</td>
<td>12 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Each other Access Point drawing POE</td>
<td>W</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total POE power required in Watts: ______

Make sure that the total POE power required **does not exceed 200 W**.

Note: Recalculate the worksheet numbers whenever devices using POE are connected to or disconnected from the network ports.
The Aruba 2400 can manage 27 port connections:

- **24 Fast Ethernet (FE) ports**

 Used for connecting to Access Points (APs) and wired LAN segments. These 10/100 Mbps FE ports aggregate and route traffic under the direction of the switch’s internal software. These ports can also provide power and serial connectivity to compatible devices.

- **2 Gigabit Ethernet (GE) ports**

 Used for high-bandwidth 10/100/1000 Mbps GE uplink between the Mobility Controller and the wired LAN. Each port socket accepts a variety of Gigabit Interface Converters (GBICs) for versatility in selecting optical and electrical interfaces.

- **One Serial Console port**

 Used for connecting a local configuration and management console.

This chapter describes the general features and physical characteristics of the various ports and details their compatible cables and connectors.

FE Network Ports

The Mobility Controller has 24 10/100 Mbps Fast Ethernet (FE) network ports.

The FE ports are used for connecting the switch to wireless Access Points (APs) and wired LAN segments. These ports can also provide power and serial connectivity to compatible devices. All FE ports automatically sense and negotiate speed, duplex, and MDI/MDX settings.

Serial & Power Over Ethernet

Each FE port supports RS-232 Serial communications and IEEE 802.3af Power Over Ethernet (SPOE).

When a compatible Power Over Ethernet (POE) device (such as the Aruba AP) is connected to a network port, the port can provide operating power to that device through the connected Ethernet cable. This allows APs to be installed in areas where electrical outlets are unavailable, undesirable, or not permitted, such as in the plenum and air handling spaces. The switch network ports automatically detect when compatible POE devices are connected and require power.
The network ports also provide serial connectivity over the same Ethernet cable, allowing convenient access to device console interfaces.

Special cables and adapters may be necessary to use SPOE features with some equipment. See material starting on page 20 for port and cable specifications.

Physical Description & LEDs

![Aruba 2400 FE Network Ports](image)

Figure B-1 Aruba 2400 FE Network Ports

FE Network Ports

Ports are grouped in banks of 8 (as shown in Figure B-1 on page 18). There are 3 banks, for a total of 24 ports. These ports provide 10/100 Mbps Fast Ethernet connectivity, and in some cases, power and serial connectivity as well. See material starting on page 20 for port and cable specifications.

LNK/ACT LED

Each FE port has its own LNK/ACT LED, located at the left side of the port. During operation, these LEDs provide the following status information:

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No Ethernet link on the port.</td>
</tr>
<tr>
<td>Green</td>
<td>An Ethernet link has been established on the port, but no data is currently being transmitted or received.</td>
</tr>
<tr>
<td>Flashing Green</td>
<td>The port is transmitting or receiving data. The flashing rate is proportional to your network activity.</td>
</tr>
</tbody>
</table>
Each FE port has its own POE LED, located at the right side of the port. This LED provides the following POE status information:

Table B-2 FE POE LED

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>The port is disabled or the attached device has not requested power. POE is not being provided by the port.</td>
</tr>
<tr>
<td>Green</td>
<td>POE is being provided to the attached device.</td>
</tr>
<tr>
<td>Amber</td>
<td>The attached device has requested power, but POE is not being provided by the port.</td>
</tr>
</tbody>
</table>

Access Point Status LEDs

Each LED represents the status of APs connected to a specific port on the switch. During operation, the LEDs provide the following information:

Table B-3 AP Status LED

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red (solid)</td>
<td>An AP on this port has failed (highest precedence).</td>
</tr>
<tr>
<td>Red (flashing)</td>
<td>An air monitor on this port has detected an unsecured AP. The AP is attached to your network but is not listed in the switch security policies. If security policies are enabled, clients are not granted access to your network through the unsecured AP.</td>
</tr>
<tr>
<td>Green (flashing)</td>
<td>An air monitor on this port has detected interference. The interfering device (AP or other radio source) has been detected by your valid APs, but has no wired presence on your network.</td>
</tr>
<tr>
<td>Amber (solid)</td>
<td>Load balancing is enabled on this port or an AP has reached the maximum number of clients it is configured to support.</td>
</tr>
<tr>
<td>Green (solid)</td>
<td>All detected APs on this port are operating as expected.</td>
</tr>
<tr>
<td>Off</td>
<td>No AP is detected on the port (lowest precedence).</td>
</tr>
</tbody>
</table>

The LED states in Table B-3 are listed in order of precedence (highest to lowest). If more than one AP is connected to the port, the state with the highest precedence is displayed.
Pin Outs

The RJ-45 female connector pin-outs are shown in Figure B-2:

Cables

The type of cable required for each port depends on the device being connected:

- Direct connection to a SPOE compatible device

 This requires an 8-conductor Category 5 UTP Ethernet cable with an RJ-45 male connector. A straight-through cable is required to preserve POE voltage polarity.

 The port should be connected to the intended device either directly or using a SPOE adapter with no intervening hubs, routers, switches, or other network equipment.

 Aruba SPOE adapters separate the serial and FE portions of the cable and route them to their individual ports on the connected device. There are two adapter models:

 - CA-SPOE-ADAPT-1 adapts the Ethernet cable for DB-9 serial and RJ-45 FE devices.
 - CA-SPOE-ADAPT-2 adapts the Ethernet cable for RJ-45 serial and RJ-45 FE devices.
The Aruba SPOE adapters are compatible with the following APs:

TABLE B-4 Aruba SPOE Adapter Compatibility

<table>
<thead>
<tr>
<th>AP Make and Model</th>
<th>POE</th>
<th>Serial</th>
<th>Aruba SPOE Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aruba APs</td>
<td>Yes</td>
<td>Yes</td>
<td>CA-SPOE-ADAPT-1</td>
</tr>
<tr>
<td>Cisco 340</td>
<td>No</td>
<td>Yes</td>
<td>CA-SPOE-ADAPT-1</td>
</tr>
<tr>
<td>Cisco 350</td>
<td>Yes</td>
<td>Yes</td>
<td>CA-SPOE-ADAPT-1</td>
</tr>
<tr>
<td>Cisco 1100</td>
<td>Yes</td>
<td>No</td>
<td>CA-SPOE-ADAPT-1</td>
</tr>
<tr>
<td>Cisco 1200</td>
<td>Yes</td>
<td>Yes</td>
<td>CA-SPOE-ADAPT-2</td>
</tr>
<tr>
<td>SMC EZ Connect 2755W</td>
<td>No</td>
<td>Yes</td>
<td>CA-SPOE-ADAPT-1</td>
</tr>
</tbody>
</table>

- **Direct connection to a POE compatible device**

 This requires a 4- or 8-conductor Category 5 UTP Ethernet cable with an RJ-45 male connector. A straight-through cable is required to preserve POE voltage polarity.

 For POE, the port should be connected directly to the intended device with no intervening hubs, routers, switches, or other network equipment.

- **Connection to a regular 10/100 Mbps Ethernet segment**

 This requires a 4- or 8-conductor Category 5 UTP Ethernet cable with an RJ-45 male connector. The port detects MDI/MDX and automatically adjusts for straight-through or crossover cables.

 The maximum length for FE cables is 100 meters (325 feet).

 For cables that run through plenums or air-handling spaces as described in NEC (2002) Article 300.22(C), the cable should be suitable under NEC Article 800.50 and marked accordingly for use in plenums and air-handling spaces with regard to smoke propagation, such as CL2-P, CL3-P, MPP or CMP.

 Be sure to install cables in accordance with all applicable local regulations and practices.
GE Uplink Ports

The switch has two Gigabit Ethernet (GE) uplink ports. These ports provide high-bandwidth 10/100/1000 Mbps Gigabit Ethernet uplinks between the Mobility Controller and the wired LAN. The port automatically senses and negotiates speed, duplex, and MDI/MDX settings.

Physical Description and LEDs

There are two GE ports. Each port socket accepts a variety of Gigabit Interface Converters (GBICs) for versatility in selecting optical and electrical interfaces. See page 23 for GBIC specifications.

Each GE port has its own LNK/ACT LED, located to the right of the port. During operation, these LEDs provide the following status information:

<table>
<thead>
<tr>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>No Ethernet link on the port.</td>
</tr>
<tr>
<td>Green</td>
<td>An Ethernet link has been established on the port, but no data is currently being transmitted or received.</td>
</tr>
<tr>
<td>Flashing Green</td>
<td>The port is transmitting or receiving data. The flashing rate is proportional to your network activity.</td>
</tr>
</tbody>
</table>
GBICs

Approved GBICs

Approved GBICs are typically selected when the line card is purchased. Although the modules are user-replaceable, for continued safety and reliability only approved modules from approved vendors should be used.

The following GBICs have been tested with this product:

Table B-6 Approved GBICs

<table>
<thead>
<tr>
<th>GBIC Type</th>
<th>Vendor</th>
<th>Module ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000BASE-T (copper)</td>
<td>Aruba</td>
<td>LC-GBIC-T</td>
</tr>
<tr>
<td></td>
<td>Molex</td>
<td>74740-0001</td>
</tr>
<tr>
<td>1000BASE-SX (optical)</td>
<td>Aruba</td>
<td>LC-GBIC-SX</td>
</tr>
<tr>
<td></td>
<td>Delta</td>
<td>GBIC-1250A3FS</td>
</tr>
<tr>
<td></td>
<td>OCP</td>
<td>DTR-1250-MM-GB</td>
</tr>
<tr>
<td></td>
<td>Agilent</td>
<td>HFBR-5601</td>
</tr>
<tr>
<td></td>
<td>Fiberxon</td>
<td>FTM 8012S-G</td>
</tr>
<tr>
<td>1000BASE-LX (optical)</td>
<td>Aruba</td>
<td>LC-GBIC-LX</td>
</tr>
<tr>
<td></td>
<td>OCP</td>
<td>DTR-1250-SM-GB-L1</td>
</tr>
<tr>
<td></td>
<td>Fiberxon</td>
<td>FTM 3012S-G</td>
</tr>
</tbody>
</table>

For more current information on modules of other types and from other vendors, visit our Web site or contact customer support (see page ix).
Replacing a GBIC

FIGURE B-4 GBIC Removal and Insertion
Cables

The following table lists the cable characteristics for approved GBICs:

TABLE B-7 GE Cable Characteristics

<table>
<thead>
<tr>
<th>GBIC Type</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000BASE-T (copper)</td>
<td>Cable: Category 5 UTP</td>
</tr>
<tr>
<td></td>
<td>Connector: RJ-45</td>
</tr>
<tr>
<td></td>
<td>Range: Up to 100 m (325 feet)</td>
</tr>
<tr>
<td>1000BASE-SX (optical)</td>
<td>Cable: 62.5 µm multimode fiber</td>
</tr>
<tr>
<td>Shortwave 850 nm</td>
<td>Connector: SC-type fiber optic</td>
</tr>
<tr>
<td></td>
<td>Range: Up to 260 m (850 feet)</td>
</tr>
<tr>
<td></td>
<td>Cable: 50 µm multimode fiber</td>
</tr>
<tr>
<td></td>
<td>Connector: SC-type fiber optic</td>
</tr>
<tr>
<td></td>
<td>Range: Up to 550 m (1800 feet)</td>
</tr>
<tr>
<td>1000BASE-LX (optical)</td>
<td>Cable: 62.5 µm multimode fiber</td>
</tr>
<tr>
<td></td>
<td>Connector: SC-type fiber optic</td>
</tr>
<tr>
<td></td>
<td>Range: 10km (6.21 miles)</td>
</tr>
<tr>
<td></td>
<td>Cable: 50 µm multimode fiber</td>
</tr>
<tr>
<td></td>
<td>Connector: SC-type fiber optic</td>
</tr>
<tr>
<td></td>
<td>Range: 10km (6.21 miles)</td>
</tr>
</tbody>
</table>

CAUTION: Fiber-optic interfaces use a laser transceiver. Use of controls or adjustments of performance or procedures other than those specified herein may result in hazardous radiation exposure.

Serial Console Port

The serial console port is located on the front panel of the Mobility Controller. This port is for connecting a local management console and can be used to access the text-based Command-Line Interface (CLI) to configure, manage, and troubleshoot the Mobility Controller.

CAUTION: Do not connect Access Points to the serial console port. The serial port is designed to connect to RS-232-only devices. Non-RS-232 devices such as Access Points will cause the Switch to fail and can cause damage.
See the ArubaOS User’s Guide for using the features available through this port.

Port & Adapter Pin Outs

The serial console port’s RJ-45 female connector accepts an RS-232 serial cable with a male connector. Pin-outs are shown in Figure B-5:

![Serial Console Port](image1)

Figure B-5 Serial Port

To connect the required RS-232 serial cable to a terminal with a DB-9 male port, use the included adapter. Pin-outs are shown in Figure B-6:

![RJ-45 Female Pin-Out](image2)

Figure B-6 Serial Port Adapter

Communications Settings

<table>
<thead>
<tr>
<th>Table B-8</th>
<th>Console Terminal Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud Rate</td>
<td>Data Bits</td>
</tr>
<tr>
<td>9600</td>
<td>8</td>
</tr>
</tbody>
</table>
Specifications

Physical

TABLE C-1 Physical Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Height 4.45 cm (1.75 inches)</td>
</tr>
<tr>
<td></td>
<td>Width 44.2 cm (17.4 inches)</td>
</tr>
<tr>
<td></td>
<td>Depth 40.9 cm (16.1 inches)</td>
</tr>
<tr>
<td>Weight</td>
<td>5.7 KG (12 lbs.)</td>
</tr>
</tbody>
</table>

Environment

TABLE C-2 Environmental Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Operating: 0 to 40 °C (32 to 104 °F)</td>
</tr>
<tr>
<td></td>
<td>Storage: 0 to 50 °C (32 to 122 °F)</td>
</tr>
<tr>
<td>Humidity</td>
<td>5% to 95% (non-condensing)</td>
</tr>
</tbody>
</table>

Operation

TABLE C-3 Operational Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>90132/180264 VAC, 50-60 Hz, 4.0/2.0 A</td>
</tr>
<tr>
<td>Network Management</td>
<td>Command-Line Interface and HTML Web-browser Interface</td>
</tr>
<tr>
<td>Standards</td>
<td>IEEE 802.1x, IEEE 802.3 10BASE-T, IEEE 802.3u 100BASE-TX, IEEE 802.3ab 1000BASE-T, IEEE 802.3z 1000BASE-SX</td>
</tr>
</tbody>
</table>
Certifications

TABLE C-4 Certifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
</table>
| Electromagnetic Compatibility | FCC Part 15 Class A
 | ICES-003 Class A
 | VCCI Class A (Japan) |
| | CE approval mark on back of the product indicates that it meets |
| | European Directive 89/336/EEC |
| | EN 55022 Class A (CISPR 22 Class A), |
| | EN55024, |
| | EN 61000-3-2, EN 61000-3-3 |
| | AS/NZS CISPR 22 Class A |
| Safety | UL60950, |
| | CAN/CSA C22.2 No 60950, |
| | IEC/EN60950 |
| | Low Voltage Directive (LVD) 73/23/EEC |
| | 21 CFR Chapter 1, Subchapter J, Part 1040.10 (Laser Safety), |
| | IEC/EN 60825-1, EN 60825-2 (Laser Safety) |
Proper Disposal of Aruba Equipment

This product at end of life is subject to separate collection and treatment in the EU Member States, Norway, and Switzerland and therefore is marked with the symbol shown at the left. Treatment applied at end of life of these products in these countries shall comply with the applicable national laws implementing Directive 2002/96EC on Waste of Electrical and Electronic Equipment (WEEE).

The Restriction on Hazardous Substances Directive (RoHS) (2002/95/EC), which accompanies the WEEE Directive, bans the use of heavy metals and brominated flame-retardants in the manufacture of electrical and electronic equipment. Specifically, restricted materials under the RoHS Directive are Lead (Including Solder used in PCB’s), Cadmium, Mercury, Hexavalent Chromium, and Bromine.

Aruba declares compliance with the European Union (EU) WEEE Directive (2002/96/EC). For more information on WEEE, refer to:

http://www.dti.gov.uk/sustainability/weee/